- Clegg, W., Little, I. R. & Straughan, B. P. (1986c). J. Chem. Soc. Dalton Trans. pp. 1283-1288.
- Clegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456-457.
- Ferrari, A., Braibanti, A., Bigliardi, G. & Lanfredi, A. N. (1965). Acta Cryst. 19, 548–555.
- Goldschmied, E., Rae, A. D. & Stephenson, N. C. (1977). Acta Cryst. B33, 2117-2120.
- Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117-122.
- Horrocks, W. D. Jr, Ishley, J. N. & Whittle, R. R. (1982a). Inorg. Chem. 21, 3265–3269.
- Horrocks, W. D. Jr, Ishley, J. N. & Whittle, R. R. (1982b). Inorg. Chem. 21, 3270–3274.
- Nadzhafov, G. N., Usubaliev, B. T., Amiraslanov, I. R., Movsumov, E. M. & Mamedov, Kh. S. (1981). *Koord. Khim.* 7, 770–775.
- Nakacho, Y., Misawa, T., Fujiwara, T., Wakahara, A. & Tomita, K. (1976). Bull. Chem. Soc. Jpn, 49, 58-61.
- Natarajan, S., Gowda, D. S. S. & Cartz, L. (1974). Acta Cryst. B30, 401-407.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988). DIF4. Diffractometer Control Program. Version 7.04. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 617-619

Bis(n-heptylammonium) Tetrachlorozincate

NING GUO

Department of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China

YONG-HUA LIN AND SHI-QUAN XI

Changchun Institute of Chemistry, Academia Sinica, 130022 Changchun, People's Republic of China

(Received 16 July 1993; accepted 8 August 1994)

Abstract

The crystal structure of $(C_7H_{18}N)_2[ZnCl_4]$ is composed of alternating layers of inorganic ions and paraffinic chains. It differs from the structures of analogous compounds that have a hydrocarbon chain containing an even number of C atoms. This may explain the oddeven effects observed in differential scanning calorimetry (DSC) measurements on these compounds.

Comment

Alkylammonium tetrahalometallates of general formula $(n-C_nH_{2n+1}NH_3)_2[MX_4]$ (M = Mn, Cu, Cd, *etc.*; X = Cl, Br) are known to form crystal structures in which

hydrocarbon layers are sandwiched between inorganic sheets (Phelps, Losee, Hatfield & Hodgson, 1976; Willet & Riedel, 1975; Peterson & Willet, 1972). DSC measurements indicate that the compounds of the series show a great variety of structural phases (Carla, Guiseppe & Guiseppe, 1986) and exhibit an odd-even effect as a function of the number of C atoms in the alkyl chain. This effect may depend on the structural differences between the odd and even compounds of the series. The structure of $(n-C_{12}H_{25}NH_3)_2[ZnCl_4]$ ($C_{12}Zn$) has been reported (Ciajalo, Corradini & Pavone, 1977). It is the aim of this paper to report the single-crystal room-temperature structure determination of the title compound (HAZn) in order to explain the odd-even effects observed in the DSC measurements.

Fig. 1 shows the numbering scheme for the non-H atoms and a view of the unit cell is presented in Fig. 2. The structure consists of organic and inorganic layers. Each inorganic layer of tetrahedral $ZnCl_{4}^{2-}$ anions is sandwiched between two hydrocarbon layers formed by $C_7H_{15}NH_3^+$ cations (Fig. 2). Each tetrahedral $ZnCl_{4}^{2-}$ anion is surrounded by six NH₃ groups from adjacent sheets. The $ZnCl_{4}^{2-}$ tetrahedra show angles from 104.7 (4) to 113.3 (5)°, which indicate a small distortion from the normal value. The distortion probably results from the formation of hydrogen bonds between N and Cl atoms. The average Zn—Cl bond length is 2.26 Å, which is slightly shorter than the value of 2.27 Å in [NH₃—(CH₂)₁₀—NH₃][ZnCl₄] (Guo, Lin, Zeng & Xi, 1992).

Fig. 1. Atomic numbering of the non-H atoms of the title compound shown with 50% probability ellipsoids.

Fig. 2. View of the unit cell with N atoms shown as large filled circles.

Each C₇H₁₅NH[‡] group displays N---C---C and C-C-C-C torsion angles close to 180°, except for the gauche bond [C(22)-C(23)], near the NH₃ polar heads (see Table 2). A similar conformation is found in (n-C₁₀H₂₁NH₃)₂[MnCl₄] (Ciajolo, Corradini & Pavone, 1976). The chains show some evidence of disorder which may be related to the solid-solid phase transition which occurs below room temperature (Guo, Lin, Zeng & Xi, 1991). The atoms adjacent to the N atoms have larger anisotropic displacement parameters and consequently large positional standard deviations.

The packing of HAZn is different from that of C_{12} Zn. The aliphatic chains in different layers of C₁₂Zn are parallel, being related by centres of inversion, but in HAZn the aliphatic chains in different layers are not parallel, as was also found in $(n-C_{13}H_{27}NH_3)_2[ZnBr_4]$ (Avitabile, Ciajolo, Napolitano & Tuzi, 1983).

Experimental

HAZn was prepared by mixing aqueous solutions of n-heptylammonium chloride and zinc chloride in stoichiometric amounts.

Crystal data

$(C_7H_{18}N)_2[ZnCl_4]$	Mo $K\alpha$ radiation
$M_r = 439.64$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 25
$P2_1nb$	reflections
a = 7.447(1) Å	$\theta = 1.5 - 17.5^{\circ}$
b = 10.387(2) Å	$\mu = 1.546 \text{ mm}^{-1}$
c = 30.082 (10) Å	T = 298 K
$V = 2326.9 (9) \text{ Å}^3$	Plate
Z = 4	$0.30 \times 0.28 \times 0.12$ mm
$D_x = 1.255 \text{ Mg m}^{-3}$	Colourless
$D_m = 1.23 \text{ Mg m}^{-3}$	

Data collection

Nicolet R3m/E diffractom-	503 observed reflections
eter	$[I > 3\sigma(I)]$
ω scans	$R_{\rm int} = 0.0370$
Absorption correction:	$\theta_{\rm max} = 17.5^{\circ}$
empirical (Sheldrick,	$h = 0 \rightarrow 9$
1983)	$k = 0 \rightarrow 13$
$T_{\min} = 0.530, T_{\max} =$	$l = 0 \rightarrow 36$
0.650	1 standard reflection
2451 measured reflections	monitored every 100
1304 independent reflections	reflections
-	intensity decay: $< 2\%$

Refinement

Refinement on F R = 0.053wR = 0.045S = 1.181503 reflections 190 parameters $w = 1/[\sigma^2(F) + 0.00026F^2]$ 5 m

503 observed reflections
$[I > 3\sigma(I)]$
$R_{\rm int} = 0.0370$
$\theta_{\rm max} = 17.5^{\circ}$
$h = 0 \rightarrow 9$
$k = 0 \rightarrow 13$
$l = 0 \rightarrow 36$
1 standard reflection
monitored every 100
reflections
intensity decay: <2%

 $(\Delta/\sigma)_{\rm max} = 0.088$ $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	y	Z	U_{eq}
Zn	0.0207 (10)	-0.2290 (2)	0.5225 (1)	0.091 (1)
Cl(1)	-0.0071 (15)	-0.2488 (5)	0.4481 (2)	0.132 (2)
C1(2)	0.2712 (8)	-0.3261 (6)	0.5478 (2)	0.114 (2)
Cl(3)	-0.2192 (10)	-0.3371 (6)	0.5508 (2)	0.133 (2)
Cl(4)	0.026(2)	-0.0206 (5)	0.5416 (2)	0.129 (2)
N(1)	0.017 (4)	-0.614 (1)	0.5429 (5)	0.179 (3)
C(11)	-0.048 (4)	-0.684 (3)	0.5795 (9)	0.253 (3)
C(12)	-0.005 (4)	-0.663 (2)	0.6195 (7)	0.217 (3)
C(13)	-0.024 (3)	-0.738 (2)	0.6604 (7)	0.190 (3)
C(14)	0.057 (3)	-0.708 (2)	0.7016 (7)	0.190 (3)
C(15)	-0.026 (3)	-0.754 (2)	0.7419 (9)	0.187 (3)
C(16)	0.066 (3)	-0.708 (3)	0.7823 (8)	0.221 (3)
C(17)	0.057 (4)	-0.763 (2)	0.8257 (7)	0.211 (3)
N(2)	0.009 (3)	0.478 (2)	0.3401 (7)	0.316 (3)
C(21)	0.095 (3)	0.504 (3)	0.2966 (9)	0.474 (3)
C(22)	-0.037 (3)	0.506 (2)	0.2640 (8)	0.162 (3)
C(23)	-0.029 (3)	0.479 (3)	0.2139 (7)	0.221 (3)
C(24)	0.063 (4)	0.524 (3)	0.1765 (11)	0.308 (3)
C(25)	-0.036 (3)	0.525 (2)	0.1342 (7)	0.174 (3)
C(26)	0.091 (3)	0.568 (2)	0.1012 (10)	0.215 (3)
C(27)	0.011 (4)	0.568 (2)	0.0600 (5)	0.104 (3)

Table 2. Selected geometric parameters (Å. °)

	0	4	
Zn-Cl(1)	2.258 (5)	Zn—Cl(2)	2.252 (9)
Zn—Cl(3)	2.275 (9)	Zn—Cl(4)	2.240 (5)
N(1)-C(11)	1.40(3)	C(11)C(12)	1.28 (4)
C(12)-C(13)	1.48 (3)	C(13)C(14)	1.41 (3)
C(14)C(15)	1.44 (3)	C(15)-C(16)	1.48 (4)
C(16)C(17)	1.43 (3)	N(2)C(21)	1.48 (3)
C(21)C(22)	1.39 (3)	C(22)C(23)	1.54 (3)
C(23)C(24)	1.40 (4)	C(24)C(25)	1.47 (4)
C(25)C(26)	1.44 (3)	C(26)C(27)	1.37 (3)
Cl(1)—Zn—Cl(2)	111.7 (4)	Cl(1)-ZnCl(3)	104.7 (4)
Cl(2)— Zn — $Cl(3)$	107.7 (2)	Cl(1)— Zn — $Cl(4)$	110.1 (2)
Cl(2)— Zn — $Cl(4)$	109.3 (5)	Cl(3)— Zn — $Cl(4)$	113.3 (5)
N(1) - C(11) - C(12)	123 (2)	C(11)-C(12)-C(1	3) 130 (2)
C(12) - C(13) - C(14)	123 (2)	C(13)-C(14)-C(1	5) 119 (2)
C(14)-C(15)-C(16)	113 (2)	C(15)C(16)C(1	7) 127 (2)
N(2)C(21)C(22)	109 (2)	C(21)-C(22)-C(2	23) 132 (2)
C(22)C(23)C(24)	138 (2)	C(23)-C(24)-C(2	25) 117 (2)
C(24)-C(25)-C(26)	106 (2)	C(25)-C(26)-C(2	27) 110 (2)
N(1)	C(11)C(12)	-C(13) -165 (3)	I.
C(11)	C(12)C(13)-	C(14) 170 (3)	I
C(12)	C(13)C(14)-	C(15) 155 (2)	I
C(13)	C(14)C(15)-	-C(16) $-176(2)$	
C(14)	-C(15)C(16)-	-C(17) $-159(3)$	I.
N(2)C	C(21)C(22)	-C(23) - 154(3)	
C(21)	C(22)C(23)-	-C(24) $-57(5)$	1
C(22)—	C(23)C(24)-	-C(25) - 146(3)	1
C(23)	C(24)-C(25)-	-C(26) - 177(3)	
C(24)	-C(25)C(26)-	C(27) 178 (2)	1

The structure was solved by Patterson methods. Successive Fourier syntheses gave the coordinates of all non-H atoms. The structure was refined using a full-matrix least-squares technique with anisotropic displacement parameters for all non-H atoms. H atoms were placed in calculated positions and were assigned isotropic displacement parameters (U_{iso} = 0.05 Å²). All calculations were performed on an Eclipse S/140 computer using the SHELXTL (Sheldrick, 1983) program package.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: MU1079). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Avitabile, G., Ciajolo, M. R., Napolitano, R. & Tuzi, A. (1983). Gazz. Chim. Ital. 113, 475–479.
- Carla, A., Guiseppe, M. & Guiseppe, Z. (1986). J. Phys. Chem. 90, 852-859.
- Ciajolo, M. R., Corradini, P. & Pavone, V. (1976). Gazz. Chim. Ital. 106, 807-816.
- Ciajolo, M. R., Corradini, P. & Pavone, V. (1977). Acta Cryst. B33, 553-555.
- Guo, N., Lin, Z., Zeng, G. & Xi, S. (1991). Chin. J. Appl. Chem. 8, 53-56.

Guo, N., Lin, Y., Zeng, G. & Xi, S. (1992). Acta Cryst. C48, 650–652. Peterson, E. R. & Willet, R. D. (1972). J. Chem. Phys. 56, 1879–1882.

Peterson, E. R. & Willer, R. D. (1972). J. Chem. Phys. 36, 1879–1882.
Phelps, D. W., Losee, D. B., Hatfield, W. E. & Hodgson, D. T. (1976).
Inorg. Chem. 15, 3147–3152.

Sheldrick, G. M. (1983). SHELXTL User's Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Willet, R. D. & Riedel, E. F. (1975). Chem. Phys. 8, 112-122.

Acta Cryst. (1995). C51, 619-621

cis-[1,2-Bis(propylsulfinyl)ethane-*S*,*S*']dichloroplatinum(II)

WALTER FILGUEIRA DE AZEVEDO JR AND YVONNE PRIMERANO MASCARENHAS

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, CEP 13560-970, São Carlos, São Paulo, Brazil

GERIMÁRIO F. DE SOUSA

Departamento de Química, Universidade de Brasília, Caixa Postal 04478, CEP 70919-900, Brasília, DF, Brazil

CARLOS A. L. FILGUEIRAS

Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270 Belo Horizonte, MG, Brazil

(Received 4 October 1993; accepted 25 August 1994)

Abstract

The coordination geometry about Pt in the title complex, $[PtCl_2(C_8H_{18}O_2S_2)]$, deviates slightly from square planar. The Pt ion is bonded to two Cl atoms, arranged in a *cis* configuration, and two S atoms of the bidentate disulfoxide ligand.

Comment

The title complex, (I), was synthesized as part of a research program on the organometallic chemistry of

tin and the behaviour of these compounds towards Pt and Pd complexes. The synthesis was carried out in $H_2O/MeOH$ solution, with a yield of 85%, as follows:

$$K_2 PtCl_4 + (PrSOCH_2)_2 \rightarrow 2KCl + cis-[PtCl_2(PrSOCH_2)_2] (I)$$

The average Pt—Cl bond length of 2.317 Å is in the normal range, according to the compilation of Orpen *et al.* (1989), which gives a value of 2.323 (38) Å for 293 examples of four-coordinate Pt. The disulfoxide ligand is bonded to the Pt atom at two coordination sites through the S atoms. The average Pt—S distance of 2.209 Å is not significantly different from the values found in *cis*-[PtCl₂(*meso*-PhSOCH₂CH₂SOPh)] [2.217 (2) and 2.209 (2) Å] and *cis*-[PtCl₂(*rac*-PhSOCH₂CH₂SOPh)] [2.192 (4) and 2.188 (4) Å] (Cattalini, Michelon, Marangoni & Pelizzi, 1979), and *cis*-[PtCl₂(*rac*-cis-PhSO-

Fig. 1. A perspective view of the title molecule with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.